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ABSTRACT

Managing multimodal interactions between humans and com-
puter systems requires a combination of state estimation
based on multiple observation streams, and optimisation of
time-dependent action selection. Previous work using par-
tially observable Markov decision processes (POMDPs) for
multimodal interaction has focused on simple turn-based
systems. However, state persistence and implicit state tran-
sitions are frequent in real-world multimodal interactions.
These phenomena cannot be fully modelled using turn-based
systems, where the timing of system actions is a non-trivial
issue. In addition, in prior work the POMDP parameterisa-
tion has been either hand-coded or learned from labelled data,
which requires significant domain-specific knowledge and is
labor-consuming. We therefore propose a nonparametric
Bayesian method to automatically infer the (distributional)
representations of POMDP states for multimodal interactive
systems, without using any domain knowledge. We develop
an extended version of the infinite POMDP method, to bet-
ter address state persistence, implicit transition, and timing
issues observed in real data. The main contribution is a
“sticky” infinite POMDP model that is biased towards self-
transitions. The performance of the proposed unsupervised
approach is evaluated based on both artificially synthesised
data and a manually transcribed and annotated human-human
interaction corpus. We show statistically significant improve-
ments (e.g. in ability of the planner to recall human bartender
actions) over a supervised POMDP method.

Index Terms— Multimodal Interaction, HDP, POMDP

1. INTRODUCTION

In order to address planning problems under uncertainty, par-
tially observable Markov decision process (POMDP) mod-
els have recently been demonstrated in several successful
applications in spoken dialogue systems (SDS) [1, 2] and
for human-robot interaction (HRI) [3]. However, existing
POMDP-style interactive systems are usually turn-based,
where belief state updates will only be considered following
explicit system actions, and without considering implicit user
state transitions. This simplification underestimates the com-
plexity of multimodal communication, where humans can
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Fig. 1. Example observations from the human-human inter-
action corpus.

generate important state transitions without intervening sys-
tem actions. Figure 1 shows the kind of multiple input streams
that we observe in human multimodal communication, where
we take a robot bartender as our example application.

A human agent could start from a miscellaneous state
without attempting to be involved in an interaction with the
robot bartender. Then at some time, it may decide to request
the bartender’s attention to start an interaction round (e.g.
to order a drink). In this case, there must be a mechanism
in the system to allow (belief) state updates even though no
explicit system action is performed. Traditional approaches
could rely on predefined trigger events to handle this situa-
tion, but in HRI the observations are multimodal, i.e. as well
as speech inputs, a user’s intention could also be realised by
various nonverbal behaviours, such as hand gestures, body
postures, facial expressions, gaze, etc, which the robot con-
troller would receive from a vision system frame-by-frame as
an event stream. Unlike in traditional speech-based dialogue
systems, where the boundary of a user state can be identi-
fied by observing silence durations above a certain length in
the speech input (i.e. the“end of speech” signal), the trigger
events to segment user states in such multimodal observa-
tions are more difficult to recognise. For example, the user
state “request for attention” can be realised by “looking at the
bartender” until a system response is received, which means
that the state duration varies and there may not be an obvious
boundary for such a state to trigger the system’s action plan-
ner. Hence, the timing of system actions is also a non-trivial
issue in such a real-world HRI task.

In addition, previous POMDP parameterisations have
been either hand-coded [1] or learned from labelled data [2],
both of which methods rely on complicated predefined se-
mantic correlations (in terms of probability dependencies)
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among the states, observations and system actions. The
construction of such a system requires significant domain-
specific knowledge and is labor-consuming. Moreover, when
more complex interactions are involved (e.g. in a real-world
HRI system as described above), it might not be easy to de-
velop reasonable assignments of such semantic correlations.

Therefore, in this paper we propose a nonparametric
Bayesian method to automatically infer the (distributional)
representations of POMDP states for complex interactive sys-
tems, without using any domain knowledge (see Section 3).
Our work essentially follows the infinite POMDP (iPOMDP)
model [4]. Firstly, we discuss its application in modelling
multimodal observations. Then we propose an extended ver-
sion, in order to better address the state persistence, implicit
state transition, and timing issues. Our main contribution is a
“sticky” iPOMDP that is biased towards self-transitions for
implicit null system actions. The proposed approach works
on frame-based observations and offers a unified framework
to jointly solve the state persistence, implicit transition, and
time-dependent action selection problems.

We evaluate the state inference performance of the sticky
iPOMDP in two ways. First we use artificially synthesised
data. After this, we evaluate its planning effects based on
a manually transcribed and annotated human-human interac-
tion corpus, by comparing our system’s action selection out-
comes against the true human actions. Promising results are
obtained in the both experimental settings. In the second ex-
periment, the proposed method selects system actions agree-
ing with the true human actions 74% of the time, and its cor-
rect actions also tend to be produced at the timing close to but
reasonably faster than the original human decisions.

The reminder of this paper is organised as follows. Sec-
tion 2 briefly reviews some fundamental knowledge about
POMDPs. Section 3 discusses the iPOMDP and how it can
be extended to handle several multimodal interaction prob-
lems, which leads to the “sticky” iPOMDP. We explain the
inference and planning algorithms for the proposed method
in Section 4 and Section 5, respectively. Our experimental re-
sults are reported in Section 6. Previous work related to the
problems of interest in this paper is discussed in Section 7.
Finally, we conclude in Section 8.

2. POMDP BASICS

A POMDP is a tuple {S,A,O, T,Ω, R, η}, where the com-
ponents are defined as follows. S, A and O are the sets of
states, actions and observations respectively. The transition
function T (s′|s, a) defines the conditional probability of tran-
siting from state s ∈ S to state s′ ∈ S after taking action
a ∈ A. The observation function Ω(y|s, a) gives the proba-
bility of the occurrence of observation y ∈ O in state s after
taking action a. R(s, a) is the reward function specifying the
immediate reward of a state-action pair. Whilst, 0 ≤ η ≤ 1
is a discount factor. In this paper, we will focus on POMDPs

with discrete state and action spaces, but the observations can
take either discrete or continuous values.

A standard POMDP operates as follows. At each time
step, the system is in an unobservable state s, for which only
an observation y can be received. A distribution over all pos-
sible states is therefore maintained, called a belief state, de-
noted by b, where the probability of the system being in state
s is b(s). Based on the current belief state, the system selects
an action a, receives a reward R(s, a) and transits to a new
(unobservable) state s′ where it receives an observation y′.
Then the belief state is updated to b′ based on y′ and a as:

b′(s′) =
1

Z(a, y′)
Ω(y′|s′, a)

∑
s

T (s′|a, s)b(s) (1)

where Z(a, y′) =
∑
s′ Ω(y′|s′, a)

∑
s T (s′|a, s)b(s) is a nor-

malisation factor. Let π be a policy that maps each belief
state b to an action a = π(b). The value function of π is then
defined to be the expected sum of discounted rewards, as:

V π(b) = R(b, π(b)) + η
∑
b′

T (b′|b, π(b))V π(b′) (2)

Now there are two inevitable problems in constructing a
POMDP: how to estimate the model parameters T , Ω and
R; and how to seek an optimal policy π maximising Vπ(b)
for every b, given T , Ω and R. Focusing on multimodal and
time-dependent interactions, we address these two questions
respectively in the following sections of this paper.

3. THE INFINITE POMDP AND ITS EXTENSIONS

The infinite hidden Markov model (iHMM) as an application
of the hierarchical Dirichlet process (HDP) has been proven
to be a powerful tool for inferring generative models from se-
quential data [5]. The iPOMDP derived in [4] directly extends
the iHMM, of which we give a brief review for the conve-
nience of future discussions.

3.1. Review of the iPOMDP

An iPOMDP utilises an HDP to define a prior over POMDPs
as follows. To generate a model from the prior, we:

• Draw the state distribution prior β ∼ GEM(λ)

• For each state-action pair (s, a):
– Draw a transition parameter Ts,a ∼ DP(α, β)

– Draw a reward parameter Θs,a ∼ HR

• For each state s:
– Draw an observation parameter1 Ωs ∼ HΩ

1Note that here, we assume that the observation function Ω(y|s) is inde-
pendent of the previous system action a [6]. This is because if the original
definition Ω(y|s, a) is utilised, the HDP tends to cluster state-action pairs
based on their observations, according to our experiments, which can con-
fuse the planning process.
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whereHΩ andHR are the respective prior distributions for Ωs
and Θs,a, GEM(λ) stands for the stick-breaking construction
procedure with a concentration parameter λ (see e.g. [5]), and
DP(α, β) is a Dirichlet process (DP) with a concentration pa-
rameter α and the base probability measure β.

Then for an interaction sequence consisting of a trajectory
ofN observations and actions {(y1, a1), (y2, a2), . . . , (yN , aN )},
the generative process is defined as:

• For i = 1, . . . , N :

– Draw a transition si ∼ PT(·|si−1, ai)

– Draw an emission yi ∼ PΩ(·|si)
– Draw a reward ri ∼ PΘ(·|si, ai+1)

where the reward function R(s, a) is rewritten as PΘ(r|s, a),
a conditional distribution describing the probability of ob-
serving reward r on state-action pair (s, a).

3.2. Multimodal Observations

To adapt the iPOMDP to the multimodal case, one essential
challenge is to construct a joint distribution function for the
multiple channels of observations. Such observations are usu-
ally presented using different representations. For example, a
common representation for speech inputs is an n-best list of
parsed dialogue acts with semantics, each with a normalised
confidence score [1, 2]. However, gesture and facial expres-
sion recognisers tend to provide continuous (frame-based in
practice) streams of events with discrete values. On the other
hand, the gaze and position (3D coordinates) information of
a human agent can be in the form of streams with continu-
ous values. Therefore, we have to define a distribution for
every observation channel and let the joint observation distri-
bution be their tensor products. Concretely, assume that there
are K channels of observations. For each frame of the in-
put z = y1:K , the observation probability will be computed
by PΩ(z|s) =

∏K
k=1 PΩk(yk|s). Hence, in the iPOMDP, we

will have the observation generation process as:

• For each state s:
– For each channel k:
∗ Draw an observation parameter Ωks ∼ Hk

Ω

Different distributions PΩk(·|s) and priors Hk
Ω can be

used for different types of channels. We start from the sim-
plest observation type, the binary indicators. The Bernoulli
distribution that has a conjugate Beta prior is a natural choice
to model such observations. When generalised to the mul-
tivariate case, it also models the occurrences of events in
n-best lists. Furthermore, one can assume that the normalised
confidence score associated with each event is drawn from
a separate Beta distribution. Although Beta likelihood does
not have a conjugate prior, one can either employ Metropolis-
Hastings algorithms to seek a target posterior [7], or perform
a Bernoulli trial to choose one of its two parameters to be
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Fig. 2. Graphical representation of the sticky iPOMDP.

1 and apply a conjugate Gamma prior for the other one [8].
Finally, to model streams of events, multinomial or multivari-
ate Gaussians can be used to draw the respective discrete or
continuous observation in each frame, for which conjugate
priors are the well-known Dirichlet distribution and Normal-
Inverse-Wishart distribution, respectively.

3.3. The “Sticky” iPOMDP

Regarding the previous discussions, state persistence and im-
plicit state transitions commonly exist in real-world multi-
modal interactions. A natural strategy addressing the timing
of system actions is to model a POMDP that allows the sys-
tem to select an action (including a null action, or a wait ac-
tion in other words) at every unit timestamp. This requires the
iPOMDP to infer the hidden user states frame-by-frame.

However, as an HDP, the iPOMDP tends to cluster obser-
vations into states, which suggests that slight changes among
the observations over time might result in them being clus-
tered to many different states. Therefore, if directly applied
here, the standard iPOMDP may experience unexpected fast
state switches (see Section 6). To better model state persis-
tence, we give a bias to self state transitions when the system
performs a null action, by drawing for each state s:

Ts,null ∼ DP(α+ κ,
αβ + δsκ

α+ κ
) (3)

where κ > 0 is a hyperparameter to weight the bias, and δs is
a Kronecker indicator. (αβ+ δsκ) means that an amount κ is
added to the s-indexed element in αβ. The idea directly fol-
lows the sticky HDP-HMM [9], but in the iPOMDP context,
self-transitions are only biased for null actions and should be
eliminated for explicit system actions. Note here, the self-
transition bias assumes that the user tends stay in the same
state if no system action is explicitly performed, however the
probabilities for implicit state transitions are still preserved.
On the other hand, when a system performs an action, the
user normally would not remain in the same state as the pre-
vious one. So self-transitions should be eliminated, which can
be done by setting PT(s|s, a) = 0 and renormalise PT(·|s, a)
every time a transition distribution is drawn. Figure 2 illus-
trates a graphical representation of the sticky iPOMDP.
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Fig. 3. State inference on synthetic data: Black solid lines
are generated randomly from underlying multinomials to rep-
resent stream events with discrete values; Green solid lines
are generated from Gaussians representing a stream of con-
tinuous observations; Magenta circles are generated from
multivariate Bernoulli distributions and simulate n-best lists
of recognised events (e.g. dialogue acts from parsed speech
recogniser hypotheses) with their radii generated from corre-
sponding Beta distributions representing confidence scores.

4. INFERENCE ALGORITHM

The weak-limit sampler used in [9] is adapted here to solve
inference problems for our sticky iPOMDP. Firstly, we ap-
proximate the HDP transition prior by a finite L-dimensional
Dirichlet distribution, which is called a degree L weak-limit
approximation. Then the HMM forward-backward procedure
can be employed to jointly sample the state sequence s1:N

given the observations sequence z1:N and action sequence
a1:N , which will significantly improve the inference speed.
Moreover, it provides a tractable finite state space for the
POMDP planning process.

Concretely, assume that we are at position 1 < i ≤ N
within an action and observation sequence {(z1, a1), (z2, a2),
. . . , (zN , aN )}. For each s ∈ S, the backward message
mi,i−1(s) passed from i to i− 1 can be computed by:

mi,i−1(s) =
∑
s′∈S

mi+1,i(s
′)PT(s′|s, ai)PΩ(zi|s′) (4)

where we define mN,N+1(s) = 1 for all s ∈ S. Based on
the backward messages, we can work sequentially forward to
sample the state assignments, as:

sj ∼
∑
s∈S

PΩ(zj |s)PT(s|sj−1, aj)mj+1,j(s)δ(s, sj) (5)

where δ(·, ·) denotes the Kronecker indicator. After this, we
can sample the auxiliary variables to update the global tran-
sition distribution, and resample new transition distributions
for each state. Finally, conditioning on those sampled states,
the posterior parameters for observations and rewards can be
sampled. Note that, since self-transitions are ruled out for ex-
plicit system actions in the sticky iPOMDP, geometric auxil-
iary variables needs to be sampled for transitions conditioned
on explicit actions to complete the data to allow conjugate
inference, as suggested in [10], whereas binomial override
auxiliary variables similar to [9] are required for transition
parameters depending on the null actions.

5. PLANNING

Due to the possibly infinitely large (continuous) observation
space together with the model uncertainty raised by HDP,
seeking an optimal policy via value iteration techniques [11,
12] is difficult in our case. Hence, in this work we employ a
classic forward search method to solve our POMDPs as pro-
posed in [4] for the standard iPOMDPs, where we sample a
set of models to compute a weighted-averaged Q-value, and
only maintain a finite set of observations generated by Monte-
Carlo sampling at each node of the search tree.

6. EXPERIMENTS

We evaluate the performance of state inference of the pro-
posed sticky iPOMDP as well as its actual planning effects
in comparison with the standard iPOMDP based on a syn-
thetic data sequence as well as a transcribed and manually
annotated human-human interaction corpus [13]. In addition,
on the second data set, a supervised learning based POMDP
model is also trained as a baseline system.

6.1. State Inference on Synthetic Data

Figure 3 illustrates the state inference performance of the
sticky iPOMDP in comparison with the standard iPOMDP on
an artificially synthesised data sequence. The sequence con-
sists of 1000 data points generated based on 4 hidden states,
2 explicit actions (red and blue dash lines), and 3 multimodal
observation channels.

Note that two implicit state transitions happen here, be-
tween point 300 and point 400 and around point 500. The ini-
tial results suggest that the sticky iPOMDP achieves a better
alignment between the inferred and true states than the stan-
dard iPOMDP, whereas the latter suffers from frequent state
switches, as can be seen in Figure 3.

6.2. Planning on Transcribed Corpus

The planning performance of the proposed model was also
evaluated based on a human-human interaction corpus [13],
which contains 50 interaction sequences between customers
and a bartender, manually transcribed and annotated from 50
video clips recorded in a real German bar. There are 6 user
states, 4 explicit system (bartender) actions, and 4 observa-
tion channels in the data. The observation channels consist of
speech, hand gestures, head gestures, and attention informa-
tion. The last three types of observations are all in the form
of streams of discrete events. However, to simulate the situ-
ation one can normally expect in an HRI setting with vision
systems and a standard speech recogniser, we split the speech
channel into two sub-channels as follows. Firstly, when a cus-
tomer starts talking, the system will keep observing a speak-
ing event. After this, only in the last frame of the speaking
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Fig. 4. State transitions in the transcribed corpus: Vertices
are user/customer states and edges are bartender/system ac-
tions. We define a common start state s0 for all interaction
sequences, and force them to finish at pay states.

stream, a dialogue act will be received. Note here, that since
the data is manually transcribed, there is no uncertainty in the
observations. However, the uncertainty comes from the state
inference. Without losing generality, noisy observations can
be fed into our models in real HRI applications. The inter-
actions are illustrated in Figure 4. Note here, the true user
states are annotated in this corpus, but this information is re-
served when training our models, and is only used for training
a baseline system and designing the evaluation metric.

The evaluation metric is designed as follows. We conduct
a leave-one-out test for each interaction sequence. In each
state, we feed the observations frame-by-frame from the be-
ginning of that state into a model trained on the remaining 49
examples, until an expected action is output by the planner or
the state finishes. Then we move to the next state and repeat
this procedure. Note here, due to the limited data (i.e. no data
on user reactions to unusual bartender actions) we assume that
if the system outputs an incorrect action, the user will just ig-
nore that action and remain in the same state continuing what
he/she is doing. This is by necessity a preliminary simulation
of real users, since we only have an offline corpus available.

We take the transcription chunk corresponding to every
0.1s video clip as a frame to generate the training data, based
on which the sticky and standard iPOMDPs are trained. De-
gree 50 weak-limit approximations are utilised as described
in Section 4, and the sampling procedures are run for 200 it-
erations. After this, a forward search Monte-Carlo planner is
employed for each of the two iPOMDPs, where 5 POMDP
models are sampled from the posterior, and the search depth
and number of (joint multimodal) observations sampled for
each search node are set to 3 and 10 respectively.

In addition, the reward distributions in both cases are con-
structed as follows. Firstly, a three-dimensional Dirichlet dis-
tribution with the concentration parameter [1, 0.01, 0.01] is
used as the prior for all (s, a) pairs, where the three corners of
the simplex correspond to reward values -10, 0 and 10 respec-
tively. Then after the state inference procedure, an observed
(s, a) is assigned a reward 0 if a = null and 10 otherwise.
Hence, the distributions PΘ(·|s, a) drawn from the posterior
will tend to reward the explicit state-action pairs that have
been seen during the sampling, penalise those unseen state-
action combinations, and stay neutral for null actions.

We also train a baseline POMDP model using the anno-
tations in our corpus, where the transition probabilities and
observation probabilities are estimated in a supervised man-
ner (frequency-based probabilities with add-one smoothing),
and the reward function is designed by simply assigning a
positive reward 10 to the explicit state-action pairs observed
in the corpus, 0 reward to state-null-action pairs, and a neg-
ative reward -10 to those unseen state-action combinations.
Leave-one-out test is also performed for the baseline model,
and in each round its policy is optimised offline using Perseus
[12]. Note that, the supervised model will naturally achieve
a bias on self state transitions, as it is trained on frame-based
state sequences, where state persistences are frequently seen.

We measure four quantities: Precision – the percentage of
the planned explicit actions agreeing with the human actions,
Recall – the percentage of the human actions recovered by
the planner, F-score – the harmonic mean of precision and
recall, and Relative Timing - the average amount of time in
seconds by which those correctly planned actions are ahead of
or behind the human actions (note that human action timing
may not be optimal).

The results for the first three quantities are shown in Ta-
ble 1. It can be found that all the models can produce sat-
isfactory plans highly agreeing with the human bartenders’
decisions. However, interestingly and surprisingly, the two
unsupervised methods achieve precisions comparable to the
supervised baseline with optimised policies, and even slightly
outperform the supervised baseline according to the F-score.
(The results are statistically significant based on approximate
randomisation tests [14], where the significance level p <
0.01.) This suggests that the states inferred by the iPOMDPs
can capture more information than the rather general state
annotations. In addition, the sticky iPOMDP works better
than the standard iPOMDP, which is due to the bias on self-
transitions allowing the probabilities to propagate more prop-
erly during belief updates, since that is the only difference be-
tween the two models. The fourth quantity tends to be action-
dependent, hence we evaluate it for each action separately and
show the results in Table 2, where the findings indicate that
the timing decisions of our methods are also close to the hu-
man bartender’s action timing, with some actions (especially
BaR) selected reasonably faster than the human bartender.

7. RELATED WORK

Time-dependent POMDP planning problems have previously
been discussed in [3], where the timing issue was solved by
explicitly defining a time-indexed state representation in the
POMDP. We argue that our sticky iPOMDP offers a more
flexible solution in comparison with his work, due to its po-
tential ability in modelling large state duration variance.

Bohus and Horvitz [15, 16] introduced a multimodal di-
alogue system that utilises supervised learning techniques to
classify multiparty engagement states and make correspond-
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Model Precision Recall F-score
Sticky iPOMDP 0.74 0.96 0.84

Standard iPOMDP 0.71 0.98 0.82
Supervised POMDP 0.78 0.85 0.81

Table 1. Accuracy of planning evaluated based on transcribed
real-world interaction sequences.

BaR Br BgAd BgsO
Sticky -1.6±1.4 -0.7±1.4 0 -0.1±0.3

Standard -1.3±1.5 -0.6±1.3 +0.1±0.0 -0.1±0.3
Supervised -1.5±1.6 -0.6±1.3 0 -0.1±0.2

Table 2. Relative timing (s) of planning evaluated based on
transcribed real-world interaction sequences.

ing decisions. In their work, the timing issue is handled
by modelling state transitions based on a dynamic graphical
model with explicitly defined variable dependencies among
the features for engagement states and observations. A re-
markable advantage of their approach is that the model can
be trained based on automatically collected observations and
state labels without explicit developer supervision. To address
several real-world situations very similar to the discussions
in [15, 16], this paper attempts an alternative that employs
recent advances in unsupervised machine learning, where no
state labels or domain-specific knowledge is required at all.

8. CONCLUSION

This paper introduces a nonparametric Bayesian POMDP
model to jointly solve several issues that commonly exist
in real-world multimodal HRI tasks, but have rarely been
discussed in previous work. The main advantages of the pro-
posed technique over previous approaches using POMDPs
are its abilities in modelling state persistence and implicit
transitions, in seeking proper action timing, and in employing
unsupervised learning.

Satisfactory results are obtained in evaluations for both
the state inference and the planning procedures, where the
proposed method selects system actions agreeing with the true
human actions 74% of the time at reasonable timing. More-
over, this unsupervised technique outperforms a supervised
model at statistically significant levels, which demonstrates
its feasibility and potential application in solving multimodal
interaction problems. The issues of its application in physi-
cal robotic systems and different domains are left open at this
stage, but will be investigated in our future research.
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