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Abstract
This paper presents initial results in the application of Value

Directed Compression (VDC) to spoken dialogue management
belief states for reasoning about complex user goals. On a small
but realistic SDS problem VDC generates a lossless compres-
sion which achieves a 6-fold reduction in the number of di-
alogue states required by a Partially Observable Markov De-
cision Process (POMDP) dialogue manager (DM). Reducing
the number of dialogue states reduces the computational power,
memory, and storage requirements of the hardware used to de-
ploy such POMDP SDSs, thus increasing the complexity of the
systems which could theoretically be deployed. In addition, in
the case when on-line reinforcement learning is used to learn the
DM policy, it should lead to, in this case, a 6-fold reduction in
policy learning time. These are the first automatic compression
results that have been presented for POMDP SDS states which
represent user goals as sets over possible domain objects.
Index Terms: spoken dialogue systems, SDS, statistical di-
alogue management, POMDP, automatic belief compression,
ABC, value directed compression, VDC, complex user goals.

1. Introduction
One of the main problems for a spoken dialogue system (SDS)
is to determine the user’s goal (e.g. plan suitable meeting times
or find a good Indian restaurant nearby) under uncertainty, and
thereby to compute the optimal next system dialogue action
(e.g. offer a restaurant, ask for clarification). Recent research in
statistical spoken dialogue systems has successfully addressed
aspects of these problems through the application of Partially
Observable Markov Decision Process (POMDP) approaches
[1, 2]. However POMDP SDS are currently limited by an im-
poverished representation of user goals adopted to make sys-
tems computationally tractable.

Work in dialogue system evaluation, e.g. Walker et al. [3]
and Lemon et al. [4], shows that real user goals are generally
sets of items, rather than a single item. People like to explore
possible trade offs between the attributes of items. Thus, as
was pointed out by Crook and Lemon [5], a central challenge
for the field of spoken dialogue systems is to develop realis-
tic large-scale statistical approaches with an accurate, extended
representation of user goals.

2. Background
2.1. POMDP for SDS DM
POMDPs are Markov Decision Processes where the system’s
state is only partially observable, i.e. there is uncertainty as to
what the true state is. The ability to account for uncertainty
is crucial for SDSs because their knowledge about the state is

uncertain due to speech recognition errors and the fact that the
user’s goals are not directly observable. In POMDP models of
spoken dialogue [6, 1, 2] the dialogue policy (what the system
should say next) is based not on a single view of the current
state of the conversation, but on a probability distribution over
all possible states of the conversation (this is denoted as the sys-
tem’s belief b). The optimal POMDP SDS dialogue act thus
automatically takes account of the uncertainty about the user’s
utterances and goals.

Formally, a POMDP is defined as a tuple
〈S, A, O, T, Ω,R〉 where S is the set of states that the
environment can be in, A is the set of actions that the system
can take, O is the set of observations which it can receive, T
is a set of conditional transition probabilities which describe
the likelihood of transitioning between states given a selected
action (e.g. P (s′ | s, a) where s, s′ ∈ S and a ∈ A), Ω is
a set of conditional observation probabilities which describe
the likelihood of each observation occurring (e.g. P (o′ | s′, a)
where o′ ∈ O), and R is the reward function (R : A, S → R).

For SDS DM we say that the user’s utterance after it has
been rendered into the form of a semantic act (or the list of
semantic acts1) is the observation o which the POMDP re-
ceives. We assume that the dialogue has a discrete number of
states which it can be in and these are represented by the set
of POMDP states S. Finally the DM action is equated to the
POMDP act a. Now given a set of transition matrices, obser-
vations vectors, and an initial belief b0 the POMDP DM can
monitor and update its belief b over the possible states of the
dialogue.

2.2. The Need for State Space Compression
Even considering limited domains, POMDP state spaces grow
very quickly. For example, consider finding a user’s restaurant
preference, which involves getting 4 pieces of information, i.e.
food type, city area, price range, quality rating. Given 8 food
types, 8 city areas, 3 price ranges and 3 quality ratings, coupled
with 7 user actions and a 34 dialogue progress indicator2 then
the dialogue state space contains 8 × 8 × 3 × 3 × 7 × 34 =
326, 592 states. A POMDP belief space is a probability distri-
bution over all these dialogue states, i.e. a 326, 592 dimensional
real valued (R) space.

In order to render such large belief spaces tractable, the cur-
rent state of the art in POMDP SDS uses a variety of hand-
crafted compression techniques, such as making several types
of independence assumption. For example, by assuming that
users are only ever interested in one type of food or one loca-
tion, and that their interests in food type, price range, quality,

1In the case of a system that considers N-best lists of ASR output.
2Whether each piece of information is filled, confirmed or unknown.



etc. are independent, the 326, 592 real valued state space can be
reduced to a much smaller “summary space” [6] consisting of,
say, 4× R values3.

3. Related Literature
The tight coupling between some dialogue states and actions
(e.g. a user’s goal state travel-from-London and system
act confirm-from-London) has led some researchers to
conclude that compression techniques, such as state aggrega-
tion, are not useful in the dialogue domain [7]. However, such
tight coupling may not exist for all states, indeed VDC has al-
ready been applied to a toy spoken dialogue system problem
[8] where it was shown that compressions could be found; loss-
lessly compressing a test problem of 433 states to 31 basis func-
tions. In addition, our introduction of sets to represent user
goals should provide additional possibilities for compression.

4. Method
4.1. Sets of User Goals
Work to date on POMDP SDS has assumed that a users have a
singular, fully constrained, fixed goal. To achieve a substantial
gain in the naturalness and flexibility of SDS we need to al-
low user’s goals that are sets of such goals. Maintaining beliefs
over “sets of goals” allows a POMDP DM to refine its belief
in the user’s requirements (managing speech recognition errors)
without forcing the user to specify a singular tightly constrained
goal.

The type of SDS task that we focus on is a limited-domain
query-dialogue, also known as a “slot filling” task. We consider
a generic system that has knowledge about some set of objects
where these objects have attributes and these attributes can take
several values. An object can thus be described by a conjunc-
tion of attribute-value pairs. A dialogue progresses with the
system obtaining requirements from the user which are speci-
fied in terms of attribute values. The system should eventually
present objects (search results) based upon its understanding of
the user’s requirement. The dialogue ends when the user accepts
one of the domain objects.

The POMDP state representation that we use is the set of
possible user goal sets. Each state represents a set of objects
that the user is willing to accept and can be expressed as a dis-
junction of object descriptions (conjunctions of attribute-value
pairs). The full state space is the complete set of possible com-
binations of disjunctions of object descriptions, e.g. given two
attributes u, v which can take the values u1, u2, u3 and v1
respectively, then the complete state space consists of 23 = 8
states as listed in Table 1 below.

Table 1: Example of complex user goal sets.
state user goal set
s1 ∅ (empty set)
s2 u=u1∧v=v1
s3 u=u2∧v=v1
s4 u=u3∧v=v1
s5 (u=u1∧v=v1) ∨ (u=u2∧v=v1)
s6 (u=u1∧v=v1) ∨ (u=u3∧v=v1)
s7 (u=u2∧v=v1) ∨ (u=u3∧v=v1)
s8 (u=u1∧v=v1) ∨ (u=u2∧v=v1) ∨ (u=u3∧v=v1)

This representation is flexible enough to handle negative
constraints, such as a user requesting “not u1”, which can be

3By considering only the maximum marginal likelihood for each of
the attributes.

represented in this state space as the disjunction of the re-
maining domain object descriptions that do not contain u1, i.e.
(u=u2∧v=v1) ∨ (u=u3∧v=v1).

A simple example of the target dialogues we are aiming for
is given in Table 2.

Table 2: Example target dialogue. S=System, U=User.
User goal: cheap central Italian or expensive Thai restaurant
S: Hello, how can I help you?
U: I’m looking for a central, cheap Italian restaurant.
S: Was that Italian?
U: Yes, or expensive Thai.
S: Okay, Ayutthaya is a great Thai restaurant ...
U: What else do you have?
S: Italian Connection serves cheap but wonderful food ...

Unlike many DM state spaces this state space does not in-
clude any state features which indicate dialogue progress, such
as numbers of filled and confirmed slots. For this particular task
we do not consider such state features are necessary as the be-
lief distribution maintained over the set of states is sufficient to
determine the dialogue progress and thus the next system act.

Of course this approach of using sets significantly expands
the state space of possible user goals, with the number of goal
sets being equal to 2 to the power of the number of object de-
scriptions.

4.2. VDC Algorithm
We use the VDC algorithm Krylov iteration for lossless com-
pression from Poupart [8] to compute the reduced state space.
This algorithm is initiated by constructing a vector for each ac-
tion a where that vector contains the reward associated with
each state s. Of these initial vectors only those that are lin-
early independent4 are retained. These form our initial basis
vectors and Krylov iteration is then applied to generate further
basis vectors. The algorithm can be understood as performing
iteratively deepening projections of these initial vectors using
the state transition and observation probabilities of the POMDP
problem. At each iteration the newly generated vectors are
tested to see if they are linearly independent of the existing set
of basis vectors. If they are, they are added to the existing set
and themselves projected in the next iteration. The algorithm
halts when all the basis vectors have been projected forward one
step and no new linearly independent vectors have been gener-
ated, or when the number of basis vectors equals the number of
states s.

The number of basis vectors produced is the size of the
compressed state space since the value5 of being in any of the
original states s can be constructed with no loss in precision6 as
the linear sum of the set of basis functions. The set of basis vec-
tors can be used to project the POMDP reward, transition, and
observation probabilities into the reduced state space, allowing
the policy to be learnt and executed in this state space.

4.3. State Transition Probabilities
We consider a version of POMDP SDS where the transition
update P (s′ | s, a) is simplified by making the assumption
that users do not change their goal during the course of a di-
alogue. This is an assumption that other authors, e.g. Williams
and Young [9], have made in the domain of SDSs.

4Cannot be constructed as a weighted summation of the existing set
of vectors.

5The sum of discounted future rewards.
6To the limit of accuracy of a digital computer.



Although we assume the user’s goal set is fixed we are not
assuming that it is necessarily consciously known by the user at
the outset. The user may well only realise their complex goal
set at the end of the dialogue. We simply assume that users will
act largely in accordance with some consistent goal set.

This assumption is not as strict as it sounds as it is only
a specification of the state transition dynamics model and pro-
vided there is some recognition uncertainty all goals will remain
reachable. In addition it is further mitigated in this work by the
representation of user goals not as singular targets but as sets of
objects. Using this formulation a user who changed their mind
would, unless they persistently negated a previous statement, be
seen as browsing a set of acceptable objects.

4.4. Observation Probabilities
Given the above assumption with regard to the transition proba-
bilities the observation probabilities become the prime driver in
computing the belief state in response to the machine’s actions.
Ideally these would be derived from SDS corpora but for our in-
vestigation we generate frequency counts from an artificial but
realistic set of frequency counts as shown in Table 3. In future
work we will build these probabilities from real data.

For each given system act a and goal state s the rules in
Table 3 assign a frequency count to each possible observation o.
These counts are then normalised so that

P
o∈O P (o|s, a) = 1.

The frequency counts presume co-operative users who can
supply a single complete object description or one attribute
value from the set of objects they are interested in during each
dialogue turn. The counts assume that users tend to align with
the system on which attributes they talk about when asked for an
attribute or when an incorrect confirmation is attempted. They
also encode that the response to correct confirmations will typ-
ically contain the provision of additional information.

As an example consider that a user’s goal set consists of
(u=u2∧v=v1) ∨ (u=u3∧v=v1) and the system attempts
to incorrectly confirm the value u1 for attribute u. A coopera-
tive user will typically respond with values for attribute u that
are acceptable. This corresponds to the fourth row in Table 3,
confirm value, value 6∈ goal set. Scanning along
that row the largest count, 600, is associated with observations
of the form ans no provide value where the provided
value is in the goal set and aligns with the attribute that the sys-
tem tried to confirm. In this example that corresponds to the ob-
servations ans no provide u2 or ans no provide u3.

5. Experiment
We consider a SDS task which has three attributes. One of the
attributes can take three different values, the other two attributes
can just take two values. This results in 12 possible object de-
scriptions (3× 2× 2) and 212 or 4,096 goal sets (states).

The system has 23 actions it can choose; greet, 3
ask attribute, 7 confirm value, 12 present obj
and 49 observations; answer yes, answer no,
ask something else, silence/out-of-domain,
12 provide obj des, 12 ans no provide obj des,
7 provide value, 7 ans yes provide value, 7
ans no provide value.

The reward structure used was -10 for present obj
where the object obj description lies outside the user goal set,
+10 for present obj where obj description lies in the user
goal set, -1 for any other system action. By penalising each
move this reward structure encourages shorter dialogues whilst
the larger penalty for incorrect presentations should prevent the

system from adopting a style of repeatedly guessing.

6. Results and Discussion
Using Krylov iteration the 4096 state problem described above
compressed to 630 states which is a compression of approxi-
mately 6.5 times. The degree of compression obtained is di-
rectly related to the number of original states which have similar
values, and is thus indirectly related to the observation matrix
of the system.

When the basis vectors are composed together in a matrix
form, each row forms a mapping from its associated state s to
that state’s compressed representation. By comparing rows we
can thus arrive at some idea of how the problem has been com-
pressed [8]. For example identical rows would indicate that the
corresponding states have been simply merged. In this case only
unique rows were found indicating that the compression does
not consist of simple state aggregation. It is not obvious that
the POMDP problem that we have set up will compress. For
example, the equivalent task using two values per attribute and
thus 8 object descriptions and 256 states failed to compress.

7. Conclusions
We show a lossless 6 fold reduction in the state space of a small
but fairly realistic POMDP SDS task. This is the first time com-
pression has been demonstrated for states representing complex
user goals. We suspect that tasks with larger numbers of fea-
tures may well exhibit even greater compression than has been
demonstrated here.

VDC was initially developed to allow large scale POMDPs
to be solved but has generally been eclipsed by other POMDP
solution techniques because the computational load in com-
pressing the POMDP task is often similar to that of simply solv-
ing the orginal task. Where VDC is of benefit is that for SDSs
we are looking not to just solve POMDP tasks but to run the
resulting systems in real time. We have found that storage is the
most pressing constraint when developing POMDP SDS DMs.
Reducing the number of states by, say, 6-fold results in a simi-
lar reduction in the storage required. Depending on the size of
the initial problem and the device that it is to be deployed to,
this and similar techniques could significantly increase the so-
phistication of tasks that can be deployed. There is a one-off
cost in computing the compression but this can be carried out
off-line and then the reduced state system can be deployed and
run on-line.

A further advantage is that when on-line reinforcement
learning is used to learn the DM policy, it should lead to, in
this case, a 6-fold reduction in policy learning time. This is be-
cause the number of states that need to be sampled is reduced
thus speeding convergence. Also in terms of off-line POMDP
policy learning this reduced problem should be solvable in rel-
atively short time as Spaan and Vlassis [10] have demonstrated
POMDP policy solving with Perseus on a robot TAG game
problem with 850 states in 28 minutes.

VDC and other automated compressed techniques reduce
the human design load by automating part of the current
POMDP SDS design process. This lowers the benchmark and
knowledge required when building such statistical systems and
may make them more easier for industry to deploy.

Such compression approaches are not only applicable to
SDSs but should be equally relevant for multi-modal interac-
tion systems where several modalities are being combined to
try compute the user’s state.



Table 3: Rules for generating observation frequency counts. “provide obj des” is the provision of an object description, i.e. a con-
junction of the complete set of attribute-value pairs that describe an object, “obj ∈ goal set” and “obj des ∈ goal set” both mean that
the set of conjunctions which describes the object exists in the users goal set, “∗” is a wild card (matches any observation) and “-”
indicates a logically impossible entry.

system act condition re. frequency countssystem act
greet none 900 0 100 - - - - - 100 - - - - - 100 - - - - - 0 0 0 40 0

ask attribute none 30 0 - 500 200 - - - - 250 100 - - - - 400 100 - - - 0 0 0 40 0

confirm value value ∈ goal set 30 9 - - - 60 40 100 - - - 90 60 150 - - - 60 120 30 150 0 0 40 0
value 6∈ goal set 30 45 - - - - 40 100 - - - - 12 30 - - - - 600 150 0 375 0 40 0

present obj obj ∈ goal set 0 0 0 - - - - - 0 - - - - - 0 - - - - - 500 0 100 40 0
obj 6∈ goal set 30 150 0 - - - - - 0 - - - - - 100 - - - - - 0 0 0 40 0
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7.1. Future Work
This is a first step in using automatic compression approaches
for developing more flexible statistical SDSs and multi-modal
interaction systems. There remains a wealth of areas to investi-
gate. For example: examining the variation in compression with
increasing numbers of attributes and values; extending the ob-
servation matrix to allow for user utterances containing more
complex conjunctions and disjunctions of values; optimising
the computation time of the Krylov iteration approach to VDC
(especially with regard to specialising it for the compression of
such limited-domain query-dialogue SDS tasks); investigating
alternative methods of generating minimal sets of bases, some
of which may produce more human-interpretable compressions,
e.g. non-negative matrix factorisations.
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