
Safe, Strong and Tractable Relevance Analysis for Planning

Patrik Haslum
Research School of Computer Science

Australian National University
and NICTA Optimisation Research Group

patrik.haslum@anu.edu.au

Malte Helmert
Dept. Math. and Computer Science

University of Basel
Basel, Switzerland

malte.helmert@unibas.ch

Anders Jonsson
Dept. Info. and Comm. Technologies

Universitat Pompeu Fabra
Barcelona, Spain

anders.jonsson@upf.edu

Abstract
In large and complex planning problems, there will almost
inevitably be aspects that are not relevant to a specific prob-
lem instance. Thus, identifying and removing irrelevant parts
from an instance is one of the most important techniques for
scaling up automated planning. We examine the path-based
relevance analysis method, which is safe (preserves plan ex-
istence and cost) and powerful but has exponential time com-
plexity, and show how to make it run in polynomial time with
only a minimal loss of pruning power.

Introduction
The difficulty of planning increases, often exponentially,
with the size of the problem description and – unfortunately
– for most planners it makes little difference how much of
the description is actually relevant for solving the problem.
The larger and more complex planning problems become,
the more likely is it that their formalisations contain irrele-
vant parts, and the greater is the computational cost of not
realising it. It is fair to say that the identification and ef-
ficient treatment of irrelevance is one of the key issues in
building scalable planners.

As important as relevance is, as difficult it is to define
precisely. In a sense, the minimal set of actions relevant for
solving a planning problem are those that appear in a (short-
est) plan. What is relevant may also change as decisions are
made during planning. We consider static relevance analy-
sis, meaning the analysis is carried out as a preprocessing
step before planning, in a way that is independent of the
planner’s approach to solving the problem. That is, the anal-
ysis acts as a simplifying problem transformation.

An ideal static relevance analysis method should have
three properties: First, it should be safe, meaning that re-
moving actions found not to be relevant preserves plan ex-
istence, as well as optimal plan cost. Second, it should be
strong, meaning that it identifies much of the irrelevancies
present in a planning problem. Third, it should be efficient,
in a theoretical as well as a practical sense. These three aims
are contradictory, so compromises have to be made. The
standard method of back-chaining from subgoals to achiev-
ers and from actions to preconditions, and eliminating ac-
tions and atoms not reachable in this way from the problem

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

goals (Gazen and Knoblock 1997) is efficient and preserves
optimal plans, but is too weak to have any significant effect
in most problems. Stronger conditions for action relevance,
such as Scholz’s (2004) path analysis method or Nebel et
al.’s (1997) minimum sets of initial facts, for example, are
intractable to decide. Most researchers have approached this
obstacle by designing tractable approximations that sacri-
fice completeness (Nebel, Dimopoulos, and Koehler 1997;
Hoffmann and Nebel 2001).

We aim for a different compromise: Starting from a pre-
vious adaptation of Scholz’s method (Jonsson 2007), we de-
sign a polynomial-time approximation that preserves com-
pleteness and optimality, at the cost of only slightly weaker
irrelevance pruning. We are still able to show that this anal-
ysis prunes actions that the standard back-chaining method
does not. Moreover, our approach does not require the
causal graph to be acyclic, although the analysis is stronger
when actions are unary.

Notation
We present our algorithm in the SAS+ finite domain plan-
ning framework, which we here briefly recap. The domain
transition graphs of the SAS+ variables are central to path-
based relevance analysis methods, which operate on paths in
these graphs.

Let V be a set of variables, and D(v) the domain of
each variable v ∈ V . We assume, w.l.o.g., that D(v) =
{1, . . . , N(v)} for each v ∈ V , where N(v) = |D(v)|. A
partial state s is a function on a subset of variables Vs ⊆ V
that assigns a value s(v) ∈ D(v) to each variable v ∈ Vs. If
Vs = V , s is a (full) state. The projection s | W of a partial
state s onto a subset of variables W ⊆ V is a partial state t
such that Vt = Vs ∩W and t(v) = s(v) for each v ∈ Vt.
The composition s⊕t of two partial states s and t is a partial
state u such that Vu = Vs∪Vt, u(v) = t(v) for each v ∈ Vt,
and u(v) = s(v) for each v ∈ Vs − Vt. Two partial states s
and t match if s | Vt = t | Vs. If, in addition, Vs ⊆ Vt, we
say that s subsumes t, which we denote s w t.

A SAS+ planning instance is a tuple P = 〈V,A, I,G〉
where V is a set of variables, A is a set of actions, I is an
initial state, and G is a (partial) goal state. Each action a ∈ A
has precondition pre(a) and effect eff(a), both partial states
on V . Action a is applicable in state s if pre(a) w s and
results in a new state s′ = s ⊕ eff(a). Action a is unary iff

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

317

|Veff(a)| = 1. We say the instance is unary iff all actions are.
The domain transition graph, or DTG, of a variable v ∈ V

is a directed graph DTG(v) = (D(v), E) with the values in
the domain D(v) of v as nodes. There is an edge (x, y) ∈ E
if and only if x 6= y and there exists an action a ∈ A such
that eff(a)(v) = y and either v /∈ Vpre(a) or pre(a)(v) = x.

Path Relevance Analysis
The relevance analysis method proposed by Scholz (2004)
works by identifying which paths through the DTGs can be
replaced by other paths. Replaceable paths are irrelevant,
and any action that appears only on such paths is irrelevant.

A path through the DTG of a variable v ∈ V corresponds
to a sequence of actions 〈a1, . . . , ak〉. This induces a se-
quence of preconditions on variables other than v, i.e. par-
tial states, 〈pre(a1) | V −{v}, . . . ,pre(ak) | V −{v}〉, and
similarly a sequence of effects on V − {v}. Path replace-
ability means that the action sequence, when appearing in a
valid plan, can be replaced by the actions of the replacement
path without invalidating the plan. A path p from value x
to value y in DTG(v) can be replaced by a different path q
from x to y iff q and p have the same effects on variables
other than v and the precondition sequence of q has no more
requirements than that of p. To preserve optimal plan length
(cost), the length (cost) of q must be no greater than that of p.
Note that if all actions are unary, any path containing cycles
is replaceable by the same path with the cycles removed.

For each variable v ∈ V , relevance analysis identifies a
set of value pairs (x, y) ∈ D(v) (called “starts” and “stops”)
such that a plan solving P may need to change the value
of v from x to y. Initially, the only pair is (I(v), G(v)) for
v ∈ VG. It then identifies the irreplaceable paths from x to
y in DTG(v). The preconditions and effects of these paths
become new starts and stops for other variables. The process
is iterated to a fixpoint where all starts and stops induced by
the current set of paths are connected (if possible) by those
paths. An action not appearing on any path in the fixpoint
set is irrelevant.

The number of distinct paths through a DTG may be expo-
nential in the number of actions affecting the variable (con-
sider, as an example, a variable with n values in which every
pair of values is connected by a different action: this yields
O(n2) actions, but O((n − 1)!) distinct paths connecting
any pair of values). Scholz’ analysis explicitly examines all
these paths, making its worst case complexity exponential.
Note, however, that it is not known whether deciding path
relevance of an action requires exponential time, since the
question that needs to be answered is only if the action lies
on some relevant path. In the next section, we introduce
our approximation method, which groups paths into sets and
performs the replaceability check on those sets. This is how
we ensure tractability.

Approximate Analysis for Unary Domains
In this section we present our method for approximate path
relevance analysis. It follows a previous adaptation of
Scholz’ method (Jonsson 2007), apart from the component
that identifies irreplaceable paths. Our new component runs

in polynomial time and approximates path irreplaceability
in a safe way, by grouping together sets of “similar” paths.
However, this also leads to some loss of precision, so that the
approximate method may label fewer actions as irrelevant.

In the rest of this section we assume that all actions are
unary. We will discuss the challenges and potential ways of
extending it to non-unary actions in the next section. When
all actions are unary, the side effect sequences of all paths
are empty so the replaceability condition reduces to com-
paring the precondition sequences. Hence, each path is, for
the purpose of our analysis, fully characterised by its start
and end values and its precondition sequence, and we will
view a path simply as a sequence of partial states.

Let p = 〈s1, . . . , sk〉 and q = 〈t1, . . . , tm〉 be two paths,
i.e., sequences of partial states. We use a(p) to denote the
action sequence associated with path p. We say that p sub-
sumes q, which we denote p w q, if k ≤ m and there exist
integers j1, . . . , jk such that 1 ≤ j1 ≤ · · · ≤ jk ≤ m and
si w tji for each 1 ≤ i ≤ k. Intuitively, one may read
p w q as “p is more generally applicable than q”. This is ex-
actly what the next lemma shows. The additional condition
k ≤ m ensures that optimal plans are preserved.

Lemma 1 Let p and q be two paths between x and y in some
DTG. Given an action sequence with subsequence a(q), if
p w q and no goal or action precondition other than y is
provided by a(q), a(q) can be replaced with a(p).

Proof (sketch): Since si w tji , the precondition si is satis-
fied whenever tji is. We can thus replace each action in a(q)
with the sequence of its associated actions in a(p). 2

Our algorithm works by maintaining lower and upper
bounds on the set of all irreplaceable paths between two
nodes in a DTG. These bounds are themselves paths, i.e.
sequences of partial states. The idea is that a path is replace-
able if its lower bound is subsumed by the upper bound of
another path (or set of paths). To represent the fact that
there may be no path between a pair of nodes, we use a
special constant NOPATH that satisfies p w NOPATH and
NOPATH 6w p for each path p. Our algorithm also exploits
the fact that no irreplaceable path through DTG(v) can have
more than N(v)− 1 edges, else it would contain cycles.

To compute bounds we introduce two operations on paths.
The intersection p u q of two paths p and q is a path
r = 〈s1, . . . , sk〉 such that r w p, r w q, and

∑k
i=1 |Vsi |

is maximised; in other words, pu q is a “maximal” path that
subsumes both p and q. The union p t q of two paths p and
q is a path r = 〈s1, . . . , sk〉 such that p w r, q w r, and∑k

i=1 |Vsi | is minimised; pt q is thus a “minimal” path that
is subsumed by both p and q. We define NOPATH u p = p
and NOPATH t p = NOPATH for each path p.

Algorithm 1 shows how to compute the intersection pu q
between two paths p = 〈s1, . . . , sk〉 and q = 〈t1, . . . , tm〉
using dynamic programming. For space reasons we omit the
algorithm for computing the union, which is very similar.
For each pair si, tj of partial states, the algorithm decides
whether to exclude si, exclude tj or, if si and tj match, in-
clude the intersection si ∩ tj . Among these three decisions,
the algorithm chooses the one that maximises the size of the

318

Algorithm 1 Intersection 〈s1, . . . , sk〉 u 〈t1, . . . , tm〉
1 for each 0 ≤ j ≤ m
2 A(0, j)← 0
3 for each 1 ≤ i ≤ k
4 A(i, 0)← 0
5 for each 1 ≤ j ≤ m
6 A(i, j)← A(i, j − 1)
7 if A(i, j) < A(i− 1, j)
8 A(i, j)← A(i− 1, j)
9 if si and tj match
10 u← si ∩ tj
11 if A(i, j) < A(i− 1, j − 1) + |Vu|
12 A(i, j) = A(i− 1, j − 1) + |Vu|
13 extract the path backwards from A(k,m)

variable sets of the path’s partial states. The path can then
be extracted by remembering the decisions made. The inter-
section of two paths is no longer than the shortest of the two,
and the union is no longer than the sum of their lengths.

Algorithm 2 identifies all edges in DTG(v) that lie on
relevant (i.e., irreplaceable) paths starting from a given value
x ∈ D(v). Each edge e = 〈o, d, s〉 consists of an origin
e.o ∈ D(v), a destination e.d ∈ D(v), and a partial state e.s
that is the precondition of the associated action. For each i ∈
D(v), LN(i) and UN(i) hold the lower and upper bounds
on all paths from x to i. For each edge e, LE(e) and UE(e)
hold the lower and upper bound on paths from x that end
with e, and RE(e) tracks whether e is relevant.

The algorithm is a modified breadth-first search that may
revisit nodes, up to at most N(v) − 1 times, if their lower
and upper bounds change. It maintains a set Edges of edges
and a set Nodes of nodes, and updates the lower and upper
bounds of edges in Edges and nodes in Nodes. An edge
is deemed irrelevant if there is another edge with the same
destination whose upper bound subsumes the lower bound
of the former. The length of an irreplaceable path, and hence
its lower bound, can never exceed N(v) − 1. Thus, we can
safely ignore upper bounds longer than N(v), since they can
never subsume any lower bound. This is done by setting q
to NOPATH when |q| ≥ N(v), at line 26.

Algorithm 2 computes the relevant edges to all nodes. We
then extract edges on irreplaceable paths from x to all cur-
rent stop values y backwards from each y, identifying each
relevant incoming edge to a node, and recursively visiting
the origin of each such edge.

Theorem 2 If RE(e) = false, either a) there exists no
path from x that includes e, or b) there exists an edge f
with f.d = e.d and RE(f) = true such that p w q for each
irreplaceable path p from x ending with f and each path q
from x ending with e.

Proof (sketch): If a) holds RE(e) is never set to true on line
17 of the algorithm. If b) holds RE(e) has to be set to false
on line 20 or 22, implying UE(f) w LE(e) for some f such
that RE(f) = true. By the definition of the intersection
and union used to compute the bounds, this implies p w
UE(f) w LE(e) w q for each such pair of paths p and q. 2

Algorithm 2 RELEVANT(v, x)
1 for each 1 ≤ i ≤ N(v)
2 LN(i)← UN(i)← NOPATH
3 for each edge e
4 LE(e)← UE(e)← NOPATH
5 RE(e)← false
6 LN(x)← UN(x)← 〈〉
7 Edges← {e = 〈o, d, s〉 : e.o = x}
8 repeat N(v)− 1 times
9 Nodes← ∅
10 for each edge e ∈ Edges
11 LE(e)← 〈LN(e.o), e.s〉
12 UE(e)← 〈UN(e.o), e.s〉
13 if e.d 6= x add e.d to Nodes
14 Edges← ∅
15 for each i ∈ Nodes
16 for each edge e such that e.d = i
17 RE(e)← LE(e) 6= NOPATH
18 for each pair of edges (e, f) s.t. e.d = f.d = i
19 if RE(f) and UE(f) w LE(e)
20 RE(e)← false
21 else if RE(e) and UE(e) w LE(f)
22 RE(f)← false
23 p← NOPATH, q ← 〈〉
24 for each relevant edge e such that e.d = i
25 p = p u LE(e)
26 q = q t UE(e) (or NOPATH if |q| ≥ N(v))
27 if p 6= LN(i) or q 6= UN(i)
28 LN(i)← p
29 UN(i)← q
30 add each edge e such that e.o = i to Edges

Complexity
The complexity of path subsumption, intersection and
union is proportional to path lengths. Because algo-
rithm RELEVANT never handles paths longer than D =
maxv∈V N(v), these operations are bounded by O(|V |D)
and O(|V |D2), respectively, and RELEVANT runs in time
O(|E||V |D3(|E| + D)). RELEVANT is invoked at most
O(|V |D) times, once for each variable-value pair, so the
total complexity of approximate path relevance analysis is
O(|E||V |2D4(|E|+ D)), i.e., polynomial in the size of the
planning instance P .

Generalisation to Non-Unary Domains
Generalising our method to non-unary domains is challeng-
ing. As already mentioned, path replacement in this case
almost always requires that the two paths have exactly the
same sequence of effects on other variables.1 We can of
course partition the sets of paths ending in each node into
equivalence classes based on their side effects, and apply
our approximate reasoning only within each such class; if
the number of such classes is polynomially bounded, the
algorithm remains polynomial. However, this approach is
likely to suffer from greatly reduced pruning power, since it

1There are exceptions to this: a sequence of effects on a variable
v is equivalent to the last effect in the sequence if the sequence
forms a contiguous path in DTG(v) that does not pass through
any value of v that is a start or stop.

319

(a) (b)

Figure 1: (a) Distribution of the fraction of actions pruned
as irrelevant, using tractable analysis. (b) Total time to solve
with and without relevance analysis. Total time with rele-
vance pruning is the sum of the time for analysis and for
search on the reduced problem.

is very unusual to find paths with the same effects but where
one has more preconditions.

An alternative approach to extending the scope of our
analysis is through problem reformulation. In many cases,
a SAS+ domain formulated with non-unary actions can be
expressed using only unary actions, if those actions are per-
mitted to have more complex (typically disjunctive) precon-
ditions. Consider, for example, the Blocksworld domain:
the Boolean variable CLEAR(x) can be replaced by the for-
mula ¬∃y BELOW(y) = x, equivalent to ∀y BELOW(y) 6= x,
which, because each block can be only in one place, is equiv-
alent to ∀y(BELOW(y) = TABLE∨∃z 6= x BELOW(y) = z).
As long as each disjunction is over permitted values of
the same variable (as in this example), the subsumption
relation between states, and hence subsumption between
paths, and the union and intersection operations, can be ex-
tended to this formalism in a fairly straightforward man-
ner (Jonsson 2007). This is how we handle the non-unary
BLOCKSWORLD and DRIVERLOG domains in the experi-
ments. We remark that other reformulations that make ac-
tions unary (e.g. serialising the effects of actions) do not ap-
pear to combine well with our approach.

Experimental Results
We ran experiments using our approach in four benchmark
domains: LOGISTICS, MICONIC, BLOCKS, and DRIVER-
LOG. We used Fast Downward (Helmert 2006) to trans-
late planning instances to SAS+. To make MICONIC unary
we modified the domain so that passengers cannot be si-
multaneously boarded and served. For BLOCKSWORLD
and DRIVERLOG we applied the problem reformulation de-
scribed in the previous section. We used the reformulated
instances only for path analysis, not for planning.

We measure the impact of relevance analysis in two ways:
First, the fraction of actions removed as irrelevant (shown as
a distribution in Figure 1(a)), and, second, the impact that
this reduction has on the total running time when solving the
planning problems optimally using A? search (implemented
in Fast Downward). With the exception of the DRIVERLOG

domain, even the approximate analysis prunes more than
half of the actions in most instances. Moreover, this often
has a dramatic impact on search: With relevance pruning,
the number of instances solved increases by 9.9% (and is a
strict superset of those solved without it). Across instances
solved also without pruning, the total number of node eval-
uations is reduced by 49.9%, and the total time by 64%. In
some simple instances that are solved very quickly, the time
for analysis is greater than the saving in search time, but, as
can be seen in Figure 1(b), the analysis clearly pays off as
problems become harder.

To measure the impact of tractable analysis, we also per-
formed exact analysis on all instances. Exact analysis only
found fewer relevant actions in DRIVERLOG and larger in-
stances of LOGISTICS, and did not allow solving more in-
stances optimally than did approximate analysis. On the
other hand, exact analysis timed out in 54% of the instances
due to its exponential behavior.

Related Work
The standard backchaining relevance analysis can be
strengthened by applying it to conjunctions of bounded size,
analogously to how the standard forward reachability check
is extended by the hm heuristics. Brafman (2001) used this
in the context of SAT planning. Because SAT planners solve
only bounded planning problems, the set of actions relevant
at a fixed number i of steps from the goal can be pruned
more effectively, but to retain completeness in general only
actions irrelevant at every i can be removed.

Nebel, Dimopoulos and Koehler (1997) formulated static
relevance analysis as an optimisation problem that consists
in selecting a set of relevant establishers that is sufficient, in
the sense that every relevant atom is supported by at least
one relevant action, and minimal, in the sense of inducing
the smallest number of relevant atoms among those true in
the initial state. Since solving this problem optimally is
NP-hard, they propose several heuristic methods which are
tractable, but which do not preserve completeness. Hoff-
mann and Nebel (2001) defined a variant of the method that
is completeness preserving for delete-free problems. How-
ever, as it is still NP-hard, they too define tractable approx-
imations: one that preserves completeness (for delete-free
problems), but is weak in pruning power, and one that is
stronger but incomplete.

Dynamic pruning methods, that work during the search,
for planning have also been proposed, such as unjustified
actions (Karpas and Domshlak 2011) and partial-order re-
ductions (Alkhazraji et al. 2012). These methods, however,
are complementary, as they prune certain paths, which may
consist of relevant actions, from the search space, but do not
remove irrelevant actions from the problem.

Detecting irrelevant actions is one of several, complemen-
tary, methods of problem simplification. Others include re-
moving unreachable atoms/actions, or (safely) abstracting
variables. These can all be combined to reduce problem
complexity (Haslum 2007). Our tractable relevance analysis
can be used, in addition to or as a drop-in replacement for
other irrelevance detection methods, in any context where
we seek to efficiently simplify a planning problem.

320

Acknowledgments
NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communica-
tions and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.
This work was partially supported by the German Research
Foundation (DFG) as part of the project “Kontrollwissen
für domänenunabhängige Planungssysteme” (KontWiss), as
well as European FP7 project #270019 (SpaceBook).

References
Alkhazraji, Y.; Wehrle, M.; Mattmüller, R.; and Helmert,
M. 2012. A stubborn set algorithm for optimal planning. In
Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI), 891–892.
Brafman, R. 2001. On reachability, relevance, and reso-
lution in the planning as satisfiability approach. Journal of
Artificial Intelligence Research 14:1–28.
Gazen, B., and Knoblock, C. 1997. Combining the expres-
siveness of UCPOP with the efficiency of Graphplan. In
Proceedings of the 4th European Conference on Planning
(ECP), 221–233.
Haslum, P. 2007. Reducing accidental complexity in plan-
ning problems. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence, 1898–1903.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. RIFO revisited: Detect-
ing relaxed irrelevance. In Proceedings of the 6th European
Conference on Planning (ECP), 325–336.
Jonsson, A. 2007. Efficient pruning of operators in planning
domains. In Lecture Notes in Artificial Intelligence: Cur-
rent Topics in Artificial Intelligence – CAEPIA 2007, volume
4788, 130–139.
Karpas, E., and Domshlak, C. 2011. Living on the edge:
Safe search with unsafe heuristics. In Proc. ICAPS’11 Work-
shop on Heuristics for Domain-Independent Planning, 53–
58.
Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ignoring
irrelevant facts and operators in plan generation. In Proceed-
ings of the 4th European Conference on Planning (ECP),
338–350.
Scholz, U. 2004. Reducing Planning Problems by Path Re-
duction. Ph.D. Dissertation, Technische Universität Darm-
stadt.

321

