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Abstract

It has been shown recently that the complexity of be-
lief tracking in deterministic conformant and contingent
planning is exponential in a width parameter that is of-
ten bounded and small. In this work, we introduce a
new width notion that applies to non-deterministic con-
formant and contingent problems as well. We also de-
velop a belief tracking algorithm for non-deterministic
problems that is exponential in the problem width, an-
alyze the width of non-deterministic benchmarks, com-
pare the new notion to the previous one over determin-
istic problems, and present experimental results.

Introduction
Planning with incomplete information can be formulated
as a search problem problem in belief space (Bonet and
Geffner 2000). This is the approach adopted in most recent
conformant and contingent planners that have to address
then two problems: keeping track of beliefs, and search-
ing for a goal belief. These two tasks are intractable in the
worst case and are normally handled by belief represen-
tations based on SAT, OBDDs, or regression techniques,
and search algorithms that appeal to domain-independent
heuristics (Bertoli et al. 2001; Brafman and Hoffmann 2004;
Bryce, Kambhampati, and Smith 2006; Shani and Brafman
2011).

Recently, the complexity of belief tracking in determinis-
tic conformant and contingent planning has been shown to
be exponential in a width parameter that is often bounded
and small (Palacios and Geffner 2009; Albore, Palacios, and
Geffner 2009). Such a bound follows from a family of trans-
lations developed for compiling planning problems with in-
complete information over beliefs into planning problems
with complete information over states. The translations are
exponential in the problem width, and for deterministic con-
formant problems result in problems that can be solved by
classical planners.

The aim of this work is to provide an alternative formu-
lation of the notion of width for bounding the complexity of
belief tracking in non-deterministic conformant and contin-
gent problems. The result is a belief representation scheme
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that is polynomial for domains with bounded width. We will
show that many interesting non-deterministic planning do-
mains have bounded width and exploit this property in sim-
ple conformant and on-line contingent planners that com-
bine this belief representation with simple heuristics.

The work is related to other proposals for tractable forms
of belief tracking in logical and probabilistic frameworks
(Doucet et al. 2000; Amir and Russell 2003), yet there are
two key differences. One is that we are after an exact ac-
count that can be used to determine with certainty whether
the goal has been achieved or an action is applicable. The
second is that an exact account of belief tracking in planning
does not have to be complete over all formulas. In order to
have a sound and complete planner, only the beliefs over ac-
tion preconditions and goals are required. This is important
because the action preconditions and goals are given, and the
structure of the actions and goals can be exploited to track
those beliefs more efficiently.

The paper is organized as follows. We review first non-
deterministic conformant and contingent planning. We then
consider the basic belief tracking algorithm and a factored
algorithm. We close by reporting experiments, discussing re-
lated work, and summarizing the main ideas.

Conformant Planning
Conformant planning is planning with incomplete informa-
tion and no sensing where a goal is to be achieved with cer-
tainty in spite of uncertainty in the initial situation or action
effects (Goldman and Boddy 1996; Smith and Weld 1998).
The model for conformant planning is characterized by a tu-
ple S = 〈S, S0, SG, A, F 〉 where

• S is a finite state space,
• S0 is a non-empty set of possible initial states S0 ⊆ S,
• SG is a non-empty set of goal states SG ⊆ S,
• A is a set of actions where A(s) denotes the set of actions

applicable in state s ∈ S, and
• F is a non-deterministic state-transition function such that
F (a, s) denotes the non-empty set of possible successor
states that follow action a in s, a ∈ A(s).

A solution to a conformant model is an action sequence that
maps each possible initial state into a goal state. More pre-
cisely, π = a0, . . . , an−1 is a conformant plan if for each
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possible sequence of states s0, s1, . . . , sn such that s0 ∈ S0

and si+1 ∈ F (ai, si), i = 0, . . . , n − 1, each action ai is
applicable in si and sn is a goal state.

Conformant planning can be cast as a path finding prob-
lems over beliefs defined as the sets of states that are deemed
possible at any one point (Bonet and Geffner 2000). The ini-
tial belief b0 is S0, and the belief ba that results from an
action a in belief state b is:

ba = {s′ | there is a s ∈ b such that s′ ∈ F (a, s)}, (1)

where it is assumed that action a is applicable in each state
s in b. In this formulation, a conformant plan is an action
sequence that maps the initial belief b0 into a goal belief bG;
i.e., a set of goal states s ∈ SG.

Syntactically, conformant planning problems are ex-
pressed in compact form through a set of state variables,
which for convenience we assume to be multivalued. More
precisely, a conformant planning problem is a tuple P =
〈V, I, A,G〉 where V stands for the problem variables X ,
each one with a finite and discrete domain DX , I is a set of
clauses over the V -literals X = x and X 6= x defining the
initial situation where x ∈ DX , A is set of actions, and G
is a set of V -literals defining the goal. Every action a has a
precondition Pre(a) given by a set of V -literals, and a set
of conditional effects C → E1| . . . |En, where C and each
Ei is a set (conjunction) of V -literals. The conditional effect
is non-deterministic if n > 1; else it is deterministic.

A conformant planning problem P = 〈V, I, A,G〉 defines
a conformant model S(P ) = 〈S, S0, SG, A, F 〉, where S is
the set of possible valuations over the variables in V , S0 and
SG are the set of valuations that satisfy I andG respectively,
A(s) is the set of operators whose preconditions are true in
s, and F (a, s) is the non-deterministic transition function
that results from collecting the successor states that may fol-
low from a by selecting one effect Ei from each conditional
effect C → E1| . . . |En whose body C is true in s. A con-
formant plan for P is a conformant plan for S(P ).

Contingent Planning
Contingent planning is planning with both uncertainty and
feedback. The model for contingent planning is the model
for conformant planning extended with a sensor model. A
sensor model is a function O(s, a) mapping state-action
pairs into observations tokens o. The expression o ∈ O(s, a)
means that token o is a possible observation when s is the
true state of the system and a is the last action done. The
observed token o provides partial information about the hid-
den state of the system as the same token may be possible
in different states. When two different tokens o1 and o2 be-
long to O(s, a), then either one can be observed in s when a
is the last action. Sensing is deterministic or noiseless when
O(s, a) contains one token, else it is non-deterministic or
noisy. The contingent model is thus similar to POMDPs but
with uncertainty encoded through sets rather than probabil-
ity distributions.

Executions in the contingent or partially observ-
able setting are sequences of action-observation pairs
a0, o0, a1, o1, . . .. If b = bi is the belief state when the action
ai is applied, and oi is the token that is observed, then the

belief ba after the action a = ai is given by Equation (1),
and the belief bi+1 = boa that follows from observing then
token o is given by:

boa = {s | s ∈ ba and o ∈ O(s, a)}. (2)

In off-line contingent planning, an action selection strategy
is sought that ensures that all possible executions end up in a
goal belief. In on-line contingent planning, an action selec-
tion strategy is sought that ensures that the single execution
that results from the interaction with the real system or suit-
able simulator, ends up in a goal belief. In both cases, the ac-
tion selection strategy can be expressed as a partial function
π over beliefs, called a policy, such that π(b) is the action to
do in belief b. In the off-line setting, the function π has to
be defined over the initial belief b0 and the non-goal beliefs
b that can be reached with π from b0. In the on-line setting,
the function π represents an action selection mechanism that
is computed for the current belief.

Syntactically, contingent problems are represented by ex-
tending the syntactic representation of conformant prob-
lems with a compact encoding of the sensor model. For
this, we assume a set V ′ of observable multivalued vari-
ables Y not necessarily disjoint from the state variables V
(i.e., some state variables may be observable), and formulas
Wa(Y = y) over a subset of state variables for each action
a and each possible value y of each observable variable Y .
The formula Wa(Y = y) encodes the states over which the
observation Y = y is possible when a is the last action. The
formulas Wa(Y = y) for the different y values in DY must
be logically exhaustive, as every state-action pair must give
rise to some observation Y = y. If in addition, the formulas
Wa(Y = y) for the different y values are logically exclusive,
every state-action pair will give rise to a single observation
Y = y, so that the sensing over Y will be deterministic. If a
state-variable X is observable, then Wa(X = x) is assumed
to be given by the formula X = x.

As an illustration, if X encodes the position of an agent,
and Y encodes the position of an object that can be detected
by the agent when X = Y , we can have an observable vari-
able Z ∈ {Y es,No} with model formula Wa(Z = Y es)
given by ∨l∈D(X = l ∧ Y = l), and model formula
Wa(Z = No) given by the negation of Wa(Z = Y es).
Here D is the set of possible locations and a is any action.
This will be a deterministic sensor. A non-deterministic sen-
sor could be used if, for example, the agent cannot detect
the presence of the object at certain locations l ∈ D′. For
this, it suffices to set Wa(Z = No) to the disjunction of the
previous formula and ∨l∈D′(X = l ∧ Y = l). The result is
that the observation Z = No becomes possible in the states
where X = Y = l holds for l ∈ D′, where Z = Y es is
possible too.

A contingent problem is a tuple P = 〈V, I, A,G, V ′,W 〉
that defines a contingent model that is given by the confor-
mant model 〈S, S0, SG, A, F 〉 determined by the first four
components in P , and the sensor model O(a, s) determined
by the last two components, where o ∈ O(a, s) iff o is a
valuation over the observable variables Y ∈ V ′ such that
Y = y is true in o only if the formula Wa(Y = y) in W is
true in s for y ∈ DY .
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Flat Belief Tracking
Conformant planning can be constructed as a special case
of contingent planning where there is just one observation
token o. From a syntactic point of view, this occurs when
there is one observable variable Y with singleton domain
DY = {y} and formula Wa(Y = y) = true for all ac-
tions a. We just focus then on contingent planning; the re-
sults easily generalize to conformant planning through this
reduction.

Given an execution a0, o0, a1, o1, . . . the problem of belief
tracking for conformant and contingent planning where ac-
tion preconditions and goals must be achieved with certainty
is the following:

Definition 1 Belief tracking in planning is the task of
determining the goals and action preconditions that are
true in the belief that results from any possible execution
a0, o0, a1, o1, . . . an, on over a given problem P .

The plain solution to this task is given by Equations 1 and
2 where the states, actions, transition function, and observa-
tions, are obtained from the syntactic representations. We
call the resulting algorithm flat belief tracking. The com-
plexity of flat belief tracking is exponential in the number
of state variables |V |. Yet, often some variables in V are al-
ways known with certainty and such variables do not add
to the complexity of tracking beliefs. Semantically, a state
variable X is always known when the value of X is known
in the initial belief state b0 and in any belief state reachable
from b0. Likewise, X is known in a belief state b if it has the
same value in all the states in b. Syntactically, a sufficient
and common condition for a state variable X to be known is
that X is observable, or that some literal X = x is known
to be true in the initial situation and that no action makes the
value of X uncertain. The latter happens when X is in the
head of a non-deterministic effect, or when X is in the head
of deterministic effect whose body involves variables that
are not known. If we let VK stand for the set of state vari-
ables in V that are always known, the complexity of belief
tracking can be expressed as:

Theorem 2 Flat belief tracking is exponential in |VU |,
where VU = V \ VK and VK is the set of state-variables
in V that are always known with certainty.

Below we develop a notion of width that improves this com-
plexity bound.

Width
For a variable X in the problem, whether a state variable, an
observation variable, or both, we define the direct causes of
X as follows:

Definition 3 A variable X is a direct cause of a variable
X ′ in a contingent problem P , written X ∈ Ca(X ′), iff
X 6= X ′, and eitherX occurs in the bodyC of a conditional
effect C → E1| · · · |En such that X ′ occurs in a head Ei,
1 ≤ i ≤ n, or X occurs in a formula Wa(X

′ = x′) for an
observable variable X ′ and some x′ ∈ DX′ .

Basically, X is a direct cause of X ′ when uncertainty
about X may affect the uncertainty about X ′ directly, not

through other variables. Note that X is not necessarily a di-
rect cause of X ′ if X appears as the precondition of an ac-
tion that affects X ′. This is because preconditions, unlike
conditions, must be known with certainty, and hence do not
propagate uncertainty to their effects. The notion of causal
relevance is given by the transitive closure of direct causa-
tion:

Definition 4 X is causally relevant to X ′ in P if X = X ′,
X ∈ Ca(X ′), or X is causally relevant to a variable Z that
is causally relevant to X ′.

In order to test whether a given literal Z = z is known
after a certain execution a0, a1, . . . in the conformant setting,
it is possible to show that one can just progress the state over
the variables X that are causally relevant to Z:

Proposition 5 Belief tracking in the deterministic or non-
deterministic conformant setting is exponential in the max
number of variables that are all relevant to a variable ap-
pearing in an action precondition or goal.

This bound is closely related to the bound obtained by
Palacios and Geffner in the deterministic setting. Indeed, if
we refer to the number of variables Z ∈ VU that are causally
relevant to X , as the conformant width of X , and set the
width of P as the max conformant width over the variables
X that appear in action preconditions or goals, Proposition 5
simply says that belief tracking for a non-deterministic prob-
lem is exponential in the problem width. This width no-
tion, however, is not equivalent to the notion of Palacios and
Geffner when used in the deterministic setting as it is defined
over variables rather than literals. We will say more about
this distinction below. In general, however, the two accounts
yield similar widths over most deterministic benchmarks.

In the contingent setting, there are variables that are not
causally relevant to a given variable Z and yet whose un-
certainty may affect Z. The situation is similar to the one
arising in Bayesian Networks (Pearl 1988), where relevance
flows both causally, in the direction of the arrows, or evi-
dentially, from the observations against the direction of the
arrows.

Definition 6 X is relevant to X ′ if X is causally relevant to
X ′, both X and X ′ are causally relevant to an observable
variable Z, or X is relevant to a variable Z that is relevant
to X ′.

Relevance is thus a transitive relation such that X is rele-
vant to X ′ if X is causally relevant to X ′, or if both X ′ and
X are causally relevant to an observable variable Z. Unlike
Bayesian Networks, the relation is not symmetric though, as
for example, X being causally relevant to X ′ does not im-
ply by itself that X ′ is relevant to X . From a Bayesian Net-
work perspective, the notion of relevance encodes ‘potential
dependency’ given that some variables are observable and
others are not.

As an example of these definitions, from an action effect
involving a variable X in the body and variables Y and Z
in the head, whether deterministic or not, it follows that X
is relevant to Y , while Z is not. However, if in addition,
Z is causally relevant to an observable variable, Z will be
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relevant to X , as both X and Z are causally relevant to the
same observable variable, and hence Z will be relevant to Y
too, by transitivity.

The context of a variable, Ctx(X), is then defined as the
set of variables in the problem that are relevant to X:
Definition 7 The context Ctx(X) of X denotes the set of
state variables in the problem that are relevant to X .

Likewise, the width of a variable is the number of variables
in its context that are not known:
Definition 8 The width of a state variable X , w(X), is
|Ctx(X) ∩ VU |, where VU = V \ VK and VK is the set
of variables that are always known.

The width of a problem is then:
Definition 9 The widthw(P ) of a conformant or contingent
problem P , whether deterministic or not, is maxX w(X),
with X ranging over the variables that appear in a goal or
action precondition in P .

The key theorem can then be expressed as:
Theorem 10 Belief tracking in P is exponential in w(P ).

The proof for this theorem follows from the results be-
low where an algorithm that achieves this complexity bound
is presented. The significance of the theorem is that belief
tracking over planning domains with width bounded by a
constant becomes polynomial in the number of problem vari-
ables. We’ll see examples of this below.

This complexity bound is similar to the ones obtained
for deterministic conformant and contingent problems (Pala-
cios and Geffner 2009; Albore, Palacios, and Geffner 2009).
The main difference is that the new account applies to non-
deterministic problems as well. The new account is simpler
and more general, but as we will see, it is also slightly less
tight on some deterministic problems.

Examples
We consider the width of some benchmark domains, start-
ing with DET-Ring (Cimatti, Roveri, and Bertoli 2004). In
this domain, there is a ring of n rooms and an agent that
can move forward or backward along this ring. Each room
has a window which can be opened, closed, or locked when
closed. Initially, the status of the windows is not known
and the agent does not know his initial location. The goal
is to have all windows locked. A plan for this determin-
istic conformant problem is to repeat n times the actions
(close, lock, fwd), skipping the last fwd action. Alterna-
tively, the action fwd can be replaced by the action bwd
throughout the plan. The state variables for the problem
encode the agent location Loc ∈ {1, . . . , n}, and the sta-
tus of each window, W (i) ∈ {open, closed, locked}, i =
1, . . . , n. The location variable Loc is (causally) relevant to
each window variable W (i), but no window variable W (i)
is relevant to Loc or W (k) for k 6= i. No variable is always
known and the largest contexts are for the window variables
W (i) that include two variables, W (i) itself and Loc. As a
result the width of the domain is 2, which is independent of
the number of state variables that grows with the number of
rooms n.

NON-DET-Ring is a variation of the domain where any
agent move, fwd or bwd, has a non-deterministic effect on
the status of all windows that are not locked, capturing the
possibility of external events that can open or close unlocked
windows. This non-determinism has no effect on the rele-
vance graph over the variables. As a result, the change has no
effect on the contexts or domain width that remains bounded
and equal to 2 for any number of rooms n.

The last version of the domain considered by Cimatti,
Roveri, and Bertoli is NON-DET-Ring-Key, where a key is
required to lock the windows. The initial position of the key
is not known, yet if the agent tries to collect the key from
a room and the key is there, the agent will hold the key.
A conformant plan for this problem is to repeat the actions
pick and fwd, n times, skipping the last fwd action, fol-
lowing then the plan for DET-Ring. In NON-DET-Ring-Key,
there is an additional state variable, LocK ∈ {1, . . . , n,H},
that represents the key location that includes the possibility
of being held. The agent location Loc is relevant to LocK
which is relevant to each window variableW (i). As a result,
both the size of the contexts Ctx(W (i)) and the problem
width increase by 1. So, the problem width remains bounded
and independent of n, with value 3.1

In the presence of partial observability, the analysis is sim-
ilar but it is necessary to consider the relevance relationships
that arise due to the presence of observable variables. For
example, one can express that the agent can always observe
whether is holding the key or not, by having an observation
variable Y ∈ {H,nH} with model formulas Wa(Y = H)
and Wa(Y = nH) given by LocK = H and LocK 6= H
respectively for all actions a. The only new relevance rela-
tionship among state variables that arises from this observ-
able variable is between Loc and LocK, as both are causally
relevant to Y . Before, Loc was relevant to LocK but not the
other way around. Yet this does not affect the domain width
that remains 3 for any n.

Factored Belief Tracking
We focus now on a belief tracking algorithm that achieves
the complexity bound established in Theorem 10 and hence
is exponential in the problem width. The key is to exploit
the relevance relations encoded in the variable contexts for
decomposing beliefs. In particular, if no variable is relevant
to any other variable, the problem width is 1 and beliefs over
each variable can be maintained separately.

For a problem P = 〈V, I, A,G, V ′,W 〉 and a state-
variableX ∈ V , we will denote byPX the planning problem
P projected over the variables in the context of X , Ctx(X).
The projected problem PX = 〈VX , IX , AX , GX , V

′
X ,WX〉

is such that VX is given by the state variables in Ctx(X)

1The problem can also be encoded by making ‘holding key’
a precondition rather than a condition for locking the windows.
In such an encoding, the variable LocK is no longer relevant to
the window variables W (i) according to the definitions, as then
LocK = H must be known with certainty, and hence uncertainty
about the windows variables W (i) is not affected by uncertainty
about LocK. The result is that in such an encoding, the domain
width reduces to 2.
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only, IX and GX are the initial and goal formulas I and G
logically projected over the variables in VX ,2 AX is A but
with the preconditions and conditional effects projected over
the variables in VX ,3 V ′X is V ′, and WX are the formulas
Wa(Y = y) inW projected over the variables in VX . Notice
that variables Y that are both state and observation variables
in P but are not relevant to X , will belong to V ′X but not to
VX , meaning that they will be just observation variables in
the projected problem PX . Moreover, the formulas for such
variables Y in WX will become Wa(Y = y) = true for all
y ∈ DY , meaning that in the problem PX , the observations
Y = y will be possible for any y, regardless of the state and
last action done. Such observations will thus be completely
irrelevant in PX and will have no effect on the resulting be-
liefs.

We state two important results for the projected problems
PX . With no loss of generality, we assume that I contains
just literals.4

Proposition 11 If an execution a0, o0, a1, o1, . . . is possible
in P , then the execution a0, o0, a1, o1, . . . is possible in the
projected problem PX .

Proposition 12 A literal X = x or X 6= x is known to be
true in the belief state b that results from a possible execution
in P iff the same literal is known to be true in the belief
state bX that results from the same execution in the projected
problem PX .

The last result is critical because belief tracking in the pro-
jected problem PX is exponential in the width of X:

Proposition 13 Flat belief tracking in the projected prob-
lem PX for a variable X in P is exponential in w(X).

This is direct from Theorem 2 as the width ofX corresponds
to the number of state variables in the projected problem
PX that are not always known. It then follows from this and
Proposition 12 that:

Theorem 14 Flat belief tracking over each of the projected
problems PX , for X being a variable in an action precon-
dition or goal of P , provides a factored algorithm for belief
tracking over P that is exponential in the width w(P ) of P .

In other words, in order to determine whether a goal
or action precondition X = x is true after an execution
a0, o0, a1, o1, . . ., we just need to consider this execution
over the projected problem PX and test the literal X = x
in the resulting belief. Since there is a linear number of pre-
conditions and goals variables, and belief tracking in each

2The logical projection over a formula F over a subset S of its
variables, is the formula F ′ defined over the variables in S only,
such that the valuations that satisfy F ′ are exactly those that can
be extended into valuations that satisfy F (Darwiche and Marquis
2002).

3The projection of a conditional effect C → E1| · · · |E1 is the
conditional effect CX → E1

X | · · · |En
X where the body C and the

effects Ei are replaced by their logical projections CX and Ei
X .

4Arbitrary formulas in DNF can always be captured in the ini-
tial situation by means of literals and dummy non-deterministic ac-
tions that are forced to apply just once at the beginning of any plan.

of the projected problems PX is exponential in w(X), the
result in the theorem follows.

As an illustration, in order to test the goals W (i) =
locked in the domain NON-DET-Ring-Key, i = 1, . . . , n,
we just need to do flat belief tracking using Equations 1 and
2 over each of the projected problems PW (i), each featur-
ing the 3 state variables in the context of W (i); namely, the
variable W (i), the agent location Loc, and the key location
LocK. All the other variables in the problem P can be ig-
nored for determining the status of the W (i) variables, and
indeed, they are not part of the projected problem PW (i).

It is important to notice that the vector of beliefs bX that
result from an execution a0, o0, a1, o1, . . . over each of the
projected problems PX , allows us to determine the status
of the X variables, and hence the status of preconditions
and goals. Yet this factored form of belief tracking does not
provide a factored representation of the global belief b that
would result from the same execution over the original prob-
lem P . That is,X = x is true or false in bX iffX = x is true
or false in b respectively, yet the belief b itself cannot be ob-
tained from the composition of the factored beliefs bX . More
precisely, the factorization is complete for determining the
truth of goals and preconditions but not for determining the
truth of arbitrary formulas. As an illustration, if P contains
three boolean state variables X1, X2, and X3, all them ini-
tially true, and an action a is applied that has the conditional
effect X1 → X2, X3|¬X2,¬X3, making thus both X2 and
X3 true or both false, then if X2 and X3 are each relevant to
a different goal, the formula X2 ≡ X3 will follow from the
resulting global belief b but not from a composition of the
factored beliefs b2 and b3 that does not track the coupling
between X2 and X3. The theory implies that tracking this
relation is not necessary for tracking the truth of precondi-
tion and goal variables as long as X2 and X3 are not both
relevant to one such variable Z. The same situation arises
if the non-deterministic effect is changed to a deterministic
effect X1 → ¬X2,¬X3, and X1 is initially unknown.

Experiments
We have experimentally tested the factored belief tracking
algorithm over a few planning domains. We used the al-
gorithm in the context of simple planning procedures and
heuristics. The vector b of local beliefs bX that result a given
execution a0, o0, a1, o1, . . . and initial belief is used to de-
termine several elements of the resulting planners; namely,
termination (i.e., whether b is a goal belief), the actions that
apply in b, the observations o that may follow from a in b,
the representation of the resulting belief boa, and the heuris-
tic h(b) that approximates the cost to the goal. The exper-
iments were conducted on a Xeon ’Woodcrest’ machine at
2.33 GHz with 8 Gb of RAM.

The first two domains are DET-Ring-Key and NON-
DET-Ring-Key, explained above, from (Cimatti, Roveri, and
Bertoli 2004). Both domains are conformant and their width
is 3. The number of unknown variables is n+2 where n is the
number of rooms. The number of problem states is n2 × 3n

and the number of belief states exponential in this num-
ber. The planner KACMBP by Cimatti, Roveri, and Bertoli
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uses an OBDD-based belief representation and cardinality
heuristics, and can solve problems with up to n = 20 rooms,
producing plans with 206 steps in slightly more than 1000
seconds. Other conformant planners such as T0 cannot be
used as the problem is non-deterministic. Tables 1a and 1b
show the scalability of the belief tracking algorithm in the
context of a greedy best-first search with a heuristic h(b),
similar to the one in (Albore, Ramirez, and Geffner 2011),
given by

∑
i=1,n h(bi), where bi is the belief factor in the

projected problem for the goal variable W (i) representing
the status of the i-th window, and h(bi) is the fraction of
states in bi where the goal W (i) = locked is false. As dis-
played in the Tables, the resulting planner scales up to in-
stances with up to 80 rooms, producing plans with 616 steps
in 187.37 seconds.

We considered also a contingent version of the problem
where the agent can detect whether the key is in the room.
In this case, we combined the belief tracking algorithm with
an on-line planner that uses a version of the AO* algorithm
(Nilsson 1980), run for a fixed number of iterations (10 it-
erations), as a lookahead mechanism for selecting the ac-
tion to do next (Bonet and Geffner 2012), similar to the use
of A* in (Koenig and Sun 2009). The heuristic used in this
lookahead search was the same as above, and ties among the
best actions were broken randomly. The results are shown
in Table 1c, where averages resulting from the on-line plan-
ner applied to different sampled hidden states are shown.
Simulations that do not reach the goal in 500 steps are cut,
contributing 500 steps to the average.

The last domain is a simple version of the Wumpus prob-
lem where an agent has to pick up the gold in a grid of size
10× 10, inhabited by a hidden Wumpus, Pits, and other ob-
jects to be avoided, each one emitting a distinct signal that
can be detected from nearby cells. The location of the gold
is also unknown. The gold emits a distinct signal that can be
detected only from the same cell. Table 2 shows the results
for running the belief tracking algorithm in the context of the
above on-line planner and a heuristic given by the distance
to the nearest unvisited cell. The width of the problem is 1,
while the number of unknown variables is n + 1, where n
is the number of objects to avoid. The state space is in the
order of 100n+1, and the belief space is exponential in this
number. As it can be seen from the table, up to n = 6 objects
can be solved.

Discussion
The formulation in the paper is closely related to recent
translation-based approaches to conformant and contingent
planning that compile beliefs away (Palacios and Geffner
2009; Albore, Palacios, and Geffner 2009). These transla-
tions, however, assume that the problems are deterministic,
and they can all be understood as mapping the uncertain ini-
tial situation I into a DNF formula ϕL = ∨iti for each pre-
condition and goal literal L, where each ‘tag’ or assumption
ti is a conjunction of literals that are uncertain in the ini-
tial situation and relevant to L. The width of L is related to
the size |ti| of the assumptions required for ϕL to be valid
and to ‘cover’ L. The assumptions ti are valid if one of the

grid dim. #objects avg. steps avg. time

10× 10 0 57.4± 46 43.6± 37
10× 10 1 137.6± 204 113.7± 167
10× 10 2 145.8± 200 195.7± 259
10× 10 3 191.2± 177 538.0± 438
10× 10 4 114.0± 57 953.6± 506
10× 10 5 48.0± 34 1552.6± 1001
10× 10 6 129.6± 105 8714.7± 4716

Table 2: Results for the Wumpus domain on a 10× 10 grid with a
variable number of objects plus the gold. A problem with n objects
has 100

(
100
n+1

)
states and O(2100

n+1

) belief states. Each data point
is the average over 5 random instances. Problems are solved with
factored belief tracking and an on-line search algorithm that relies
on a bounded AO* lookahead search (Bonet and Geffner 2012).
Standard deviations are high because the difficulty of the instances
for a fixed number of objects varies widely.

them is true in I (i.e., I |= ϕL), and they cover L if for
each ti there is a state s such that 1) s satisfies I ∪ {ti}
and 2) I ∪ {ti} implies all literals L′ true in s that are rel-
evant to L. Our account yields similar widths on most de-
terministic benchmarks, and is both simpler and more gen-
eral because it handles non-determinism. Yet it is also less
tight on some deterministic problems. As an illustration, if
I = {x1 ∨ · · · ∨xn} and the actions are ai, each with condi-
tional effect xi → G, i = 1, . . . , n, the conformant problem
with goal G has width 1 in Palacios and Geffner’s account,
but width n in our account. The relevance account based on
literals is indeed finer than the one based on variables but it
is also more difficult to generalize to non-deterministic set-
tings. This difference does not seem to have practical effects
over most benchmarks where disjunctions in the initial situ-
ation are exclusive (oneof ’s).

Another importance difference with these approaches is
that complete translations are always exponential in the
problem width not just worst case exponential. On the other
hand, our complexity bound is worst case; i.e., if the vari-
ables in the contexts are highly correlated, the actual com-
plexity of factored belief tracking can be much lower.

The notion of width appears also in Bayesian Networks
where inference is exponential in the width of the network
(Pearl 1988). Three differences that can be pointed out in
relation to our notion of width are that 1) we exploit the
knowledge that certain variables are not observable, 2) we
can determine and use the knowledge that certain variables
will be always known, and 3) we make use of the distinction
between action conditions and preconditions in planning. As
an example, a problem where an agent has to go through n
doors whose status, open or closed, can only be observed
when the agent is near the door, will have width no smaller
than n when modeled as a Dynamic Bayesian Network, as
all the door variables affect the agent location variable. In
our setting, however, the problem has width 1 because the
status of a door need to be known to the agent before it can
open, close or walk the door.
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n steps expanded time

10 68 355 0.01
20 138 705 0.21
30 208 1055 1.14
40 277 1400 3.73
50 345 1740 9.65
60 415 2090 21.43
70 476 2395 39.57
80 545 2740 71.75

(a) DET-Ring-Key

n steps expanded time

10 118 770 0.05
20 198 1220 0.91
30 278 1670 4.67
40 488 3210 16.39
50 438 2570 37.40
60 468 2660 56.35
70 543 3080 108.35
80 616 3480 187.37

(b) NON-DET-Ring-Key

n avg. steps avg. time

6 35.6± 2.3 1.23± 0.1
8 68.8± 13.0 6.03± 1.4

10 95.6± 27.0 16.38± 4.1
12 111.2± 16.9 33.69± 4.5
14 135.0± 16.7 64.56± 6.8
16 168.6± 25.0 114.53± 20.6
18 184.6± 14.9 185.81± 24.4
20 238.0± 33.2 386.90± 110.2

(c) CONT-Ring-Key

Table 1: Results for conformant and contingent Ring problems. A problem with n rooms has n23n states and O(2n
23n) belief states.

Panels (a) and (b) are the conformant deterministic (DET-Ring-Key) and non-deterministic (NON-DET-Ring-Key) problems respectively,
while panel (c) is a contingent problem (CONT-Ring-Key). Conformant problems are solved with a (greedy) best-first search that uses the
evaluation function f(b) = h(b) for the heuristic h described in the text. The contingent problem is solved with factored belief tracking and
an on-line search algorithm that uses a version of AO* in a bounded lookahead search (Bonet and Geffner 2012). Each data point in panel (c)
is the average (and sampled standard deviation) over 5 random instances.

Conclusions
We have introduced a new notion of width for planning with
incomplete information and showed that belief tracking is
exponential in the problem width even in the presence of
non-deterministic actions and non-deterministic sensing. We
have also introduced a factored belief tracking algorithm that
achieves this bound, tested it over some domains, and ana-
lyzed the width of several problems. In the future, we want
to apply these results to POMDPs where uncertainty is not
modeled through sets but through probability distributions.
In addition, we want to use the formulation to introduce be-
lief approximations by partitioning the projected subprob-
lems PX further and by using tractable forms of inference
for enforcing a degree of consistency among the different
partitions.
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